

4-Channel, Programmable Gain Voltage Output, 15 MHz Input Bandwidth 8-Bit DACs with Multiplying Parallel Digital Data Port

FEATURES

- Programmable Gain
- 4 Independent 2-Quadrant Multiplying 8-Bit DACs with Output Amplifiers
- Dual Positive (+10 V and +5 V) Supplies or Dual (±5 V) Supplies Capability
- High Speed:
 - 12.5 MHz Digital Clock Rate
 - V_{REF to} V_{OUT} Settling Time: 150ns to 8-bit (tvp)
 - Voltage Reference Input Bandwidth:
 15 MHz
- Very Low Noise Gain Control
- Low Power: 80mW
- Low AC Voltage Reference Feedthrough
- Excellent Channel-to-Channel Isolation

- DNL = ± 0.5 LSB, INL = ± 1 LSB (typ)
- DACs Matched to ±0.5% (typ)
- Low Harmonic Distortion: 0.25% typical with V_{RFF} = 1 V p-p @ 1 MHz
- Latch-Up Free
- ESD Protection: 2000 V Minimum

APPLICATIONS

- Direct High-Frequency Automatic Gain Control
- Video AGC & CCD Level AGC
- Convergence Adjustment for High-Resolution Monitors (Workstations)
- Multiplier Replacement

GENERAL DESCRIPTION

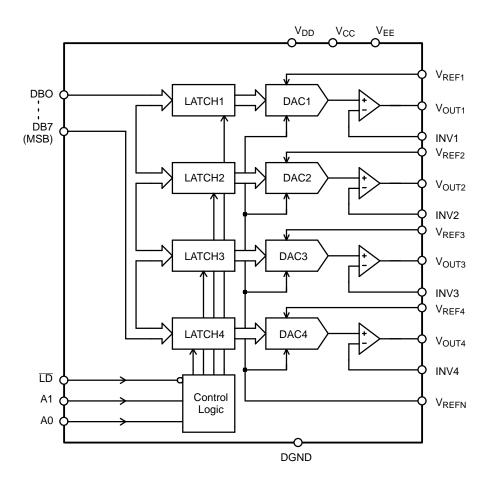
The MP7643 is ideal for digital gain control of high frequency analog signals such as video, composite video and CCD. The device includes 4-channels of high speed, wide bandwidth, two quadrant multiplying, 8-bit accurate digital-to-analog converter. It includes an output drive buffer per channel capable of driving a ± 1 mA (typ) load. DNL of better than ± 0.5 LSB is achieved with a channel-to-channel matching of typically 0.5%. Stability, matching, and precision of the DACs are achieved by using MPS' thin film technology. Excellent channel-to-channel isolation is also achieved with MPS' BiCMOS process which cannot be achieved using a typical CMOS technology.

An open loop architecture (patent pending) provides wide small signal bandwidth from V_{REF} to output up to 15 MHz (typ),

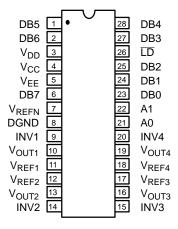
fast output settling time of 150 ns, and excellent V_{REF} feedthrough isolation. The negative feedback terminal of the output op amp is available for user gain control. In addition, low distortion in the order of 0.25% with a 1 V p-p, 1 MHz signal is achieved.

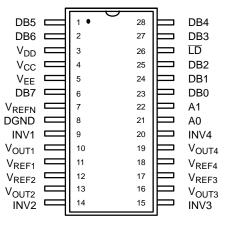
The combination of a constant input Z and the ability to vary V_{REFN} within V_{CC} –1.8 V to V_{EE} +1.5 V allows flexibility for optimum system design.

The MP7643 is fabricated on a junction isolated, high speed BiCMOS (BiCMOS IVTM) process with thin film resistors. This process enables precision high speed analog/digital (mixed-mode) circuits to be fabricated on the same chip.


ORDERING INFORMATION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (% FSR)
SOIC	–40 to +85°C	MP7643AS	<u>+</u> 1	<u>+</u> 0.5	<u>+</u> 1.5
Plastic Dip	-40 to +85°C	MP7643AN	<u>+</u> 1	<u>+</u> 0.5	<u>+</u> 1.5


SIMPLIFIED BLOCK DIAGRAM



PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

28 Pin SOIC (Jedec, 0.300") S28

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION
1	DB5	Data Input Bit 5
2	DB6	Data Input Bit 6
3	V_{DD}	Digital Positive Supply
4	V _{CC}	Analog Positive Supply
5	V_{EE}	Analog Negative Supply
6	DB7	Data Input Bit 7
7	V_{REFN}	Negative Reference Input
8	DGND	Digital Ground
9	INV1	Inverting Input 1
10	V _{OUT1}	DAC 1 Output
11	V _{REF1}	DAC 1 Positive Reference Input
12	V_{REF2}	DAC 2 Positive Reference Input
13	V_{OUT2}	DAC 2 Output
14	INV2	Inverting Input 2

PIN NO.	NAME	DESCRIPTION	
15	INV3	Inverting Input 3	
16	V _{OUT3}	DAC 3 Output	
17	V_{REF3}	DAC 3 Positive Reference Input	
18	V_{REF4}	DAC 4 Positive Reference Input	
19	V_{OUT4}	DAC 4 Output	
20	INV4	Inverting Input 4	
21	A0	DAC Address Bit 0	
22	A1	DAC Address Bit 1	
23	DB0	Data Input Bit 0	
24	DB1	Data Input Bit 1	
25	DB2	Data Input Bit 2	
26	LD	Load Data to Selected DAC	
27	DB3	Data Input Bit 3	
28	DB4	Data Input Bit 4	

ELECTRICAL CHARACTERISTICS TABLE FOR DUAL SUPPLIES

Unless Otherwise Noted: V_{DD} = 5 V, V_{CC} = +5 V, V_{EE} = -5 V, V_{REF} = 3 V and -3 V, T = 25°C, Output Load = No Resistive Load, V_{REFN} = DGND = 0 V, Gain = 1

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
DC CHARACTERISTICS						
Resolution (All Grades) Differential Non-Linearity Integral Non-Linearity Monotonicity Gain Error Zero Scale Offset Output Drive Capability	N DNL INL GE Zofs Io	8	±0.5 ±1 Guaranteed ±1	±0.8 ±1 ±1.5 ±50	Bits LSB LSB % FSR mV mA	FSR = Full Scale Range ¹
REFERENCE/INV INPUTS						
Impedance of V _{REF} Voltage Range INV DC Voltage Range	REF V _{RP} V _{RN}	6 V _{EE} +1.5 V _{EE} +1		18 V _{CC} –1.8 0	kΩ V V	V _{REF} Max Swing is V _{REFN} ±3 V
DYNAMIC CHARACTERISTICS ²						$R_L = 5 \text{ k}, C_L = 20 \text{ pF}$
Input to Output Bandwidth Input to Output Settling Time ⁵ Small Signal Voltage Reference Input to Output Bandwidth	ft _r		15 150 15		MHz ns MHz	V_R = 1.6 V p–p, R_L = 5k to V_{EE} V_R = 1.6 V p–p, R_L = 5k to V_{EE} V_{OUT} =50mV p-p above code 16
Small Signal Voltage Reference Input to Output Bandwidth	ft_r		15		MHz	V _{OUT} =50mV p-p for all codes
Voltage Settling from V _{REF} to V _{DAC} Out Voltage Settling from Digital	t _{sr}		300 300		ns	V_R =0 to V_R = 3V Step ⁶ to 1 LSB ZS to FS to 1 LSB
Code to V _{DAC} Out V _{REF} Feedthrough	t _{sd} F _{DT}		TBD		ns dB	Codes=0 @ 1 MHz
Group Delay Harmonic Distortion	GD T _{HD}		TBD TBD		ns %	V _{REF} =1MHz Sine 3V p-p
Channel-to-Channel Crosstalk Digital Feedthrough Power Supply Rejection Ratio	C _T Q PSRR		TBD TBD <u>+</u> 0.05		dB nVS %/%	@ 1 MHz, single channel CLK to V_{OUT} $\Delta V = \pm 5\%$
POWER CONSUMPTION						
Positive Supply Current Negative Supply Current Power Dissipation	I _{CC} I _{EE} P _{DISS}		80	12 12	mA mA mW	V _{REF} = 0 V V _{REF} = 0 V V _{REF} = 0 V, Codes = all 1
DIGITAL INPUT CHACTERISTICS						
Logic High ³ Logic Low ³ Input Current Input Capacitance ²	V _{IH} V _{IL} I _L C _L	2.4	8	0.8 ±10	V V μA pF	

ELECTRICAL CHARACTERISTICS TABLE

			25°C			
Description	Symbol	Min	Тур	Max	Units	Conditions
DIGITAL TIMING SPECIFICATIONS (2, 4)						
Address to LD Setup Address to LD Hold Data to LD Setup Data to LD Hold LD Pulse Width PRESET Pulse Width	t _{AS} t _{AH} t _{DS} t _{DH} t _{LD} t _{PR}	70 0 70 0 70 50			ns ns ns ns ns	

NOTES

- Full Scale Range (FSR) is 3V.
- ² Guaranteed but not production tested.
- 3 Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.
- See Figure 1.
- For reference input pulse: $t_R = t_F \ge 100 \text{ ns.}$

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

|--|

NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

conditions for extended periods may affect device reliability.

Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

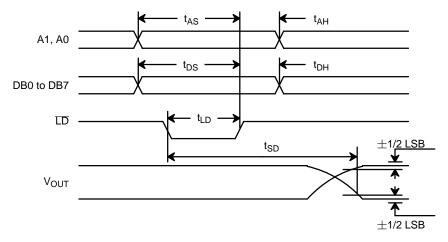
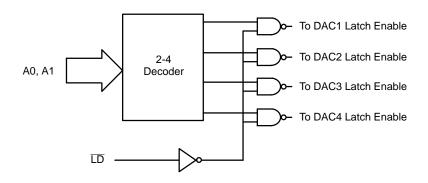



Figure 1. Timing Diagram

LD	A1	Α0	Operation
L	L	L	DAC1 Transparent
↑		L	DAC1 Latched
L	L	H	DAC2 Transparent
↑	L	H	DAC2 Latched
L	H	L	DAC3 Transparent
↑		L	DAC3 Latched
L	H	H	DAC4 Transparent
↑	H	H	DAC4 Latched
Н	Х	Х	No Operation

Figure 2. Input Control Logic (Simplified)
Block Diagram

Table 1. Truth Table

D7 MSB	D6	D5	D4	D3	D2	D1	D0 LSB	DAC Output Voltage $V_{Oi} = V_{REFN} + (V_{Ri} - AGND) \left(\frac{D}{256}\right)$	
0	0	0	0	0	0	0	0	V _{REFN}	
0	0	0	0	0	0	0	1	$(V_{Ri} - V_{REFN}) (\frac{1}{256}) + V_{REFN}$	
1	1	1	1	1	1	1	0	$(V_{Ri} - V_{REFN}) (\frac{254}{256}) + V_{REFN}$	
1	1	1	1	1	1	1	1	$(V_{Ri} - V_{REFN}) (\frac{255}{256}) + V_{REFN}$	

Note: These outputs must be ratioed up for gain in the output amplifier.

Table 2. DAC Transfer Function
Analog Output vs. Digital Code (With V_{REF} Shorted to INV)

THEORY OF OPERATION

The MP7643 is a 4-channel multiplying D/A converter that incorporates a novel open loop architecture invented by MPS. The design produces the wider bandwidth, faster settling time, more constant group delay, and a lower noise operation compared to the conventional R-2R based architectures. This device is particularly useful in applications where analog multipliers are used to perform the gain adjustment function for high frequency analog signal conditioning. Analog multipliers produce higher noise and offset. This design allows for digital control of gain with constant and very low noise from the low gain through high gain ranges of operation.

Linearity Characteristics

Each DAC achieves DNL \leq ±0.5 LSB (typ), INL \leq ±1 LSB (typ), and gain error \leq ±1.5%. Since all 4 channel D/A converters are fabricated on the same IC, the linearity matching and gain matching of ±0.5% (typ) is achieved.

AC and Transient Settling Characteristics

The novel subranging architecture delivers a 15 MHz (typ.) -3 dB bandwidth. With all codes = 1 and a 1.6 V step impulse at V_{REF}(1-4), the analog output settles to 8 bits of accuracy in typically 150 ns (with R_L = 5k to V_{EE}). Also with V_{REF} = 3 V or -3 V and a FS to ZS or ZS to FS code change, the respective analog output settles to 8 bits typically in 300 ns. Note that the AC performance specifications also match between all 4 channels. The above AC and transient performance is achieved with each channel consuming only 20 mW (typ.) with either ± 5 V or 0 V to 10 V supplies.

Digital Interface

The MP7643 allows direct interface to most microprocessor buses without additional I/O circuitry. *Figure 1.* and *Figure 2.* describe the operation, specification and interface characteristics of the logic port.

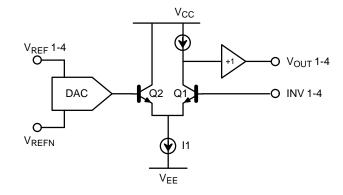
The address bits A0 and A1 determine which D/A channel is selected. When \overline{LD} input is low the respective latch of the D/A is enabled (digital input data becomes transparent to the latch and the selected DAC channel), and digital data is loaded into the selected DAC.

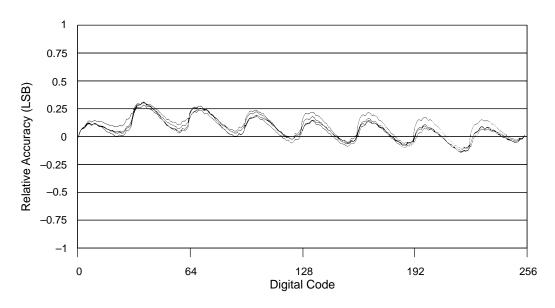
Power Supplies and Voltage Reference DC Voltage Ranges

For the single supply operation, V_{CC} = +10 V, V_{DD} = +5 V, and V_{EE} = GND = 0 V. The V_{OUT} 1-4 and V_{REF} 1-4 range would be V_{CC} -1.8 V (10 - 1.8 = 8.2 V) to V_{EE} +1.5 V (0 + 1.5 = 1.5 V). V_{REFN} is the equivalent of AGND for this DAC. In this mode V_{REFN} can be set at $(V_{CC} + V_{EE})/2 = (10 + 0)/2 = 5$ V. V_{REFN} DC range can, however, be set from V_{EE} +1.5 = 1.5 V to V_{CC} -1.5 = 8.2 V. Refer to *Table 2*. for the relationship equations.

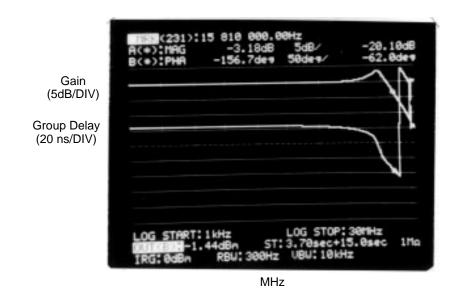
For the dual supply operation, V_{CC} = +5, V_{DD} = +5, and V_{EE} = -5 V. The V_{OUT} 1-4 and V_{REF} 1-4 range would be V_{CC} -1.8 V (5 V -1.8 = 3.2 V) to V_{EE} +1.5 V (-5 + 1.5 = -3.5 V). In this mode V_{REFN} can be set to $(V_{CC} + V_{EE})/2 = (5 - 5)/2 = 0$ V. However, V_{REFN} DC range can be set from V_{EE} +1.5 V = 3.5 V to V_{CC} -1.8 = +3.2 V. Refer to *Table 2*. for the relationship equations.

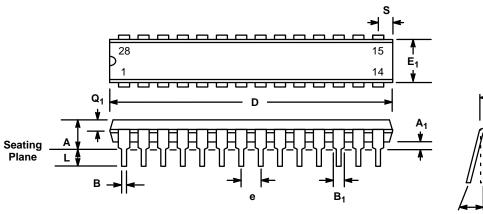
About the INV Input and its DC Voltage Range

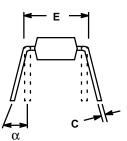



Figure 3. Simplified Block Diagram

As noted in the specification table, the max DC value of the INV input pin is V_O . Figure 3. shows a simplified block diagram of the internal circuitry around INV. If $V_{\rm INV}$ exceeds V_O , Q1 will saturate and the amp and consequently the DAC becomes nonfunctional.

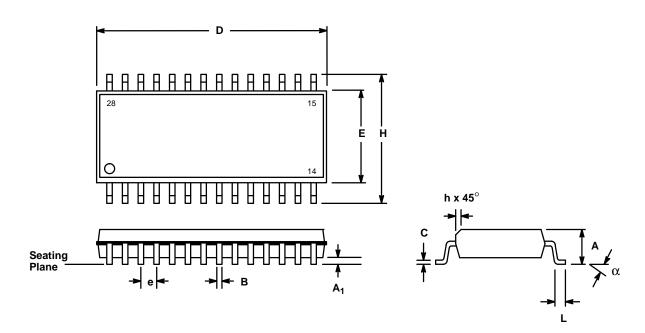

The min DC range of INV is limited to V_{be} (Q1) and V_{CE} (sat) of I_1 . Therefore, INV (min-DC) = V_{EE} +1 V.


Graph 1. Relative Accuracy vs. Digital Code DACs 1 to 4



Graph 2. Typical Gain and Group Delay vs. Frequency (with 5K Resistor Across Output to V_{EE})

28 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN28



	INC	CHES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
Α	0.130	0.230	3.30	5.84
A ₁	0.015	_	0.381	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.340	1.485	34.04	37.72
Е	0.290	0.325	7.37	8.26
E ₁	0.240	0.310	6.10	7.87
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.020	0.100	0.508	2.54

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.

28 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC) \$28

	INC	CHES	MILLIN	METERS	
SYMBOL	MIN	MAX	MIN	MAX	
Α	0.097	0.104	2.464	2.642	
A1	0.0050	0.0115	0.127	0.292	
В	0.014	0.019	0.356	0.483	
С	0.0091	0.0125	0.231	0.318	
D	0.701	0.711	17.81	18.06	
Е	0.292	0.299	7.42	7.59	
е	0.0	50 BSC	1.27 BSC		
Н	0.400	0.410	10.16	10.41	
h	0.010	0.016	0.254	0.406	
L	0.016	0.035	0.406	0.889	
α	0°	8°	0°	8°	

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1995 EXAR Corporation Datasheet April 1995

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

T@M"